UNPINNED ACTIONS VIA METRIC SCOTT ANALYSIS

ASSAF SHANI

ABSTRACT. We prove Thompson's theorem, that any non-CLI Polish group induces an unpinned orbit equivalence relation, using the metric Scott analysis.

Theorem 0.1 (Hjorth-Thompson). Let G be a Polish group. The following are equivalent.

- (1) All orbit equivalence relations induced by G are pinned.
- (2) G admits a complete left invariant metric. ("G is CLI".)

The direction $(2) \implies (1)$ is due to Hjorth [Hjo99] (see also [Kan08, 17.4]). The direction $(1) \implies (2)$ is due to Thompson [Tho06]. One corollary of Thompson's theorem is that for a Polish group G, if G is not CLI, then there is an orbit equivalence relation induced by G which is not essentially countable. This established a partial answer to a question of Kechris (see [KMPZ20, Problem 1.2]).

We give here a short proof of Thompson's theorem, relying on the metric Scott analysis of Ben Yaacov, Doucha, Nies, and Tsankov [BYDNT17], and their generalization of Gao's theorem to automorphism groups of metric structures.

Let E be an equivalence relation on a (Polish) space X. Recall that (\mathbb{P}, τ) is an **E-pin** if \mathbb{P} is a forcing poset, τ is a \mathbb{P} -name forced to be in X and $\mathbb{P} \times \mathbb{P}$ forces that $\tau_{\text{left}} E \tau_{\text{right}}$. Equivalently, for any two generics G, H over $V, \tau[G]$ and $\tau[H]$ are in the same E-class (in any model that contains them both). An E-pin is **trivial** if there is some $x \in X$ in the ground model so that $\mathbb{P} \Vdash \tau E \check{x}$. An equivalence relation is said to be **pinned** if all of its pins are trivial.

Fix a separable metric structure M in a countable relational language L, and consider the group $G = \operatorname{Aut}(M)$. We define an equivalence relation E induced by a continuous action of G on a Polish space.

Let X_0 be the space of all 1-Lipschitz function from M to [0, 1], and consider the product Polish space $X = X_0^{\omega}$. $G = \operatorname{Aut}(M)$ acts naturally on X_0 by $g \cdot \varphi(x) = \varphi(g^{-1} \cdot x)$ for any $\varphi \in X_0$. Note that $g \cdot \varphi$ is Lipschitz since g is an isometry of M. Let $a: G \curvearrowright X$ be the diagonal action, and let $E = E_a$ be the induced orbit equivalence relation.

Lemma 0.2. Let M be a separable metric structure. Assume that there is a nonseparable model N for the Scott sentence of M. Then E is not pinned.

Date: July 16, 2022.

ASSAF SHANI

Proof. Fix a dense set $D \subseteq N$. Let \mathbb{P} be the poset adding a countable enumeration of D by finite approximations. In the \mathbb{P} -generic extension, the completion of N is a separable complete metric structure satisfying the Scott sentence of M, and is therefore isomorphic to M. Fix a \mathbb{P} -name \dot{f} for an isomorphism from (the completions of) M to N.

Since N is not separable we may find $\epsilon > 0$ and $\{a_i : i < \omega_1\} \subseteq N$ so that $d(a_\alpha, a_\beta) \geq \epsilon$ for any $\alpha \neq \beta$. Fix a sequence $\langle r_\alpha : \alpha < \omega_1 \rangle$ of distinct members of 2^{ω} . As in [Tho06, p.1121], define $\varphi_i : N \to \mathbb{R}$, for $i \in \omega$, by

$$\varphi_i(x) = \inf \left\{ d(x, a_\alpha) : \alpha < \omega_1 \text{ and } r_\alpha(i) = 1 \right\}.$$

(Assume for convenience that the metric d is bounded by 1.) The important property of these functions is the following. Suppose $a \in N$ and $d(a, a_{\alpha}) < \frac{\epsilon}{4}$. Then for any $i \in \omega, \varphi_i(a) < \frac{\epsilon}{4}$ if and only if $r_{\alpha}(i) = 1$.

Each φ_i is a 1-Lipschitz function defined on N. Let τ be the name for the sequence $\langle \varphi_i \circ \dot{f} : i < \omega \rangle$, a member of X. We show first that (\mathbb{P}, τ) is an E-pin.

Suppose $G \times H$ is a generic filter for $\mathbb{P} \times \mathbb{P}$. Then in $V[G \times H]$ there is an automorphism g of M so that $\dot{f}[G] \circ g = \dot{f}[H]$. Now $g^{-1} \cdot \tau[H] = \tau[G]$, so $\tau[H]$ and $\tau[G]$ are E-related, as required.

It remains to show that this pin is not trivial. Assume towards a contradiction that there is $x = \langle \psi_i : i < \omega \rangle \in X$ so that \mathbb{P} forces that $\check{x} \in \tau$. Working in the ground model, let $\langle q(n) : n < \omega \rangle$ be a dense subset of M, and define a sequence $\langle s_n : n < \omega \rangle$ of members of 2^{ω} as follows.

$$s_n(i) = 1 \iff \psi_i(q(n)) < \frac{\epsilon}{4},$$

There must be some $\alpha < \omega_1$ so that $r_{\alpha} \neq s_n$ for all $n < \omega$.

Fix a generic $G \subseteq \mathbb{P}$ and let f = f[G] be the isomorphism from M to N. There is some automorphism g of M so that $g \cdot x = \tau$, meaning $\varphi_i \circ f \circ g = \psi_i$ for all $i < \omega$. Fix π so that $dN(f(g(g(\pi))) \circ g) \in f(g(g(\pi)))$. Now for any $i \in \omega$.

Fix n so that $d^N(f(g(q(n))), a_\alpha) < \frac{\epsilon}{4}$ and let a = f(g(q(n))). Now for any $i < \omega$

$$s_n(i) = 1 \iff \psi_i(q(n)) < \frac{\epsilon}{4} \iff \varphi_i(a) < \frac{\epsilon}{4} \iff r_\alpha(i) = 1.$$

So $s_n = r_{\alpha}$, a contradiction.

Recall that any Polish group G is isomorphic to a group of the form $\operatorname{Aut}(M)$ for some separable metric structure M (see [Gao09, Lemma 2.5.1] and [Gao09, Theorem 2.4.5.]). (1) \Longrightarrow (2) of Theorem 0.1 now follows. Fix a Polish group G, and some separable metric structure so that $G = \operatorname{Aut}(M)$. If G is not CLI, then by [BYDNT17, Theorem 9.2] the Scott sentence of M has some non-separable model N, and therefore G has a non-pinned action as above.

References

- [BYDNT17] Itaï Ben Yaacov, Michal Doucha, André Nies, and Todor Tsankov, Metric scott analysis, Advances in Mathematics 318 (2017), 46–87.
 - [Gao09] S. Gao, *Invariant descriptive set theory*, Pure and Applied Mathematics, vol. 293, CRC Press, 2009.

- [Hjo99] Greg Hjorth, Orbit cardinals: on the effective cardinalities arising as quotient spaces of the form X/G where G acts on a Polish space X, Israel J. Math. 111 (1999), 221–261. MR1710740
- [Kan08] Vladimir Kanovei, Borel equivalence relations, University Lecture Series, vol. 44, American Mathematical Society, Providence, RI, 2008. Structure and classification. MR2441635
- [KMPZ20] Alexander S. Kechris, Maciej Malicki, Aristotelis Panagiotopoulos, and Joseph Zielinski, On polish groups admitting non-essentially countable actions, Ergodic Theory and Dynamical Systems (2020), 1–15.
 - [Tho06] Alex Thompson, A metamathematical condition equivalent to the existence of a complete left invariant metric for a polish group, The Journal of Symbolic Logic **71** (2006).

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, USA *E-mail address:* shani@math.harvard.edu